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In the following pages, we will examine the mathematical properties of the dielectric permittivity
as a function of the frequency for rapidly variable fields and we will derive the Kramers-Kronig
relations, which mutually relate the real and imaginary part of the permittivity.

I. RELATION BETWEEN THE E FIELD
AND THE INDUCTION D

Let us consider a medium in presence of an elec-
tric field, which varies in time. For rapidly variable
fields, the amplitudes of the fields involved are prat-
ically always fairly small. Therefore, the relation
between D and E can be always taken to be linear.
The most generic linear relation between D(t) and
the values of E(t) at every previous instant can be
written in the integral form:

D(t) = E(t) +

∫ t

0

f(τ)E(t− τ)dτ (1)

f(τ) is a function of time and of the properties of the
medium. In analogy with the electrostatic relation
D = εE, we can write equation (1) in the symbolic
form D = ε̂E, where ε̂ is a linear integral operator
whose effect is the one shown in (1).
Any variable field can be expanded into a series
of single-frequency components (Fourier series), in
which all quantities depend on time through the fac-
tor e−iωt. For these field, relation (1) can be rewrit-
ten as

D = ε̂(ω)E (2)

where the function ε̂(ω) is defined, as

ε̂(ω) ≡ ε(ω)

ε0
= 1 +

∫ +∞

0

f(τ)eiωτdτ (3)

ε0 being the dielectric constant in vacuum. From
now on, we will omit the hat sign. Hence, for vari-
able fields, we can regard the electric permittivity as
a function of the frequency and of the properties of
the medium. The dependence of ε on the frequency
is called dispersion law.
In general, the function ε(ω) is complex. We shall
denote its real and imaginary parts by respectively
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ε′ and ε′′: ε(ω) = ε′(ω) + iε′′(ω). From equation (3),
it follows immediately that

ε(−ω) = ε∗(ω) (4)

Separating real and imaginary parts, we obtain

ε′(−ω) = ε′(ω), ε′′(−ω) = −ε′′(ω) (5)

Thus, ε′ is an even function of the frequency, while
ε′′ is odd. In the limit ω → 0, the function ε(ω)
tends naturally to the dielectric constant εr > 1.
For dielectrics, therefore, the Taylor expansion of ε′

begins with the constant term εr, while the Taylor
expansion of ε′′ begins with a term in ω.
In the limit ω →∞, ε(ω) tends to unity: this is due
to the fact that when the fields vary too rapidly, the
polarization processes responsible of the difference
between the field E and the induction D cannot oc-
cur. We shall assume that the frequency of the field
is greater compared to the frequencies that charac-
terize the motion of the electrons of the atoms of the
medium. When this condition is satisfied, we can
calculate the polarization of the medium regarding
the electrons as free and neglecting any other inter-
action. The velocities v of the motion of the elec-
trons are far smaller than the speed of light c, so the
distances travelled v/ω by the electrons in one pe-
riod of the electromagnetic wave are small compared
to the wavelenght c/ω. For this reason, we can as-
sume that the field is uniform in order to determine
the velocity acquired by one electron in that field.
The equation of motion is therefore

m
dv′

dt
= −eE = −eE0e

−iωt (6)

where −e and m are the charge and the mass of
the electron. Solving the equation we obtain v′ =
−ieE/mω. The displacement r is given by ṙ = v′,
that is r = eE/mω2. The polarization is the dipole
moment per unit volume: if N is the total number
of electrons per unit volume, we have

P = −Ner = −Ne
2E

mω2
(7)



From the definition of induction[? ], D = ε(ω)E =
E + 4πP, it follows

ε(ω) = 1− 4πNe2

mω2
(8)

II. RELATION BETWEEN REAL PART
AND IMAGINARY PART OF ε(ω)

The function f(τ) which appears in equation (1)
is finite for every value of τ , including zero. For di-
electrics, it tends to zero as τ → ∞. This merely
expresses the fact that the value of D(t) at some in-
stant cannot be appreciably affected by the values of
E(t) at remote instants. The physical concept un-
derlying equation (1) is the establishment of electric
polarization; therefore, the range of values for which
f(τ) is significantly different from zero is of the or-
der of the relaxation time that characterizes these
processes.
We have defined the function ε(ω) as

ε(ω) = 1 +

∫ +∞

0

eiωτf(τ)dτ

It is possible to derive some general properties in-
volving this function by using the methods of com-
plex analysis. In order to do so, we regard ω as a
complex variable (ω = ω′+iω′′) and study the prop-
erties of the function ε(ω) in the upper-half plane
(ω′′ > 0).
For the definition (1), together with the properties
mentioned above, it follows that ε(ω) is an one-
valued regular function everywhere in the upper-half
plane. Matter of fact, for ω′′ > 0, the integrand
in (1) contains the exponentially-decreasing factor

e−ω
′′τ ; hence, since f(τ) is finite throughout the

region of integration, the integral converges. The
permittivity ε(ω) for dielectrics has no singularities
on the real axis (ω′′ = 0). The physical meaning
of ε(ω) in the upper-half plane is the relation be-
tween D and E for fields whose amplitude decreases
as e−ω

′′t. The conclusion that ε(ω) is regular on the
upper-half plane is, physically, a consequence of the
casualty principle.
It is also evident from definition (1) that

ε(−ω∗) = ε∗(ω) (9)

This relation generalizes the one expressed in equa-
tion (4) to complex ω. In particular, for purely imag-
inary ω we have ε(iω′′) = ε∗(iω′′), that means that
ε(ω) is real on the imaginary axis:

=(ε) = 0 for ω = iω′′ (10)

Equation (9) simply expresses the fact that the op-
erator relation D = ε̂E must give real values of D
for real values of E. If the field E(t) is given by the
real expression

E = E0e
−iωt + E∗0e

iω∗t

then, applying the operator ε̂ we have

D = ε(ω)E0e
−iωt + ε(−ω∗)E∗0eiω

∗t

and the condition for this to be real is indeed the
condition (9).

The imaginary part of ε(ω) is positive for real posi-
tive ω = ω′ > 0, that is the right-half plane. Since
from equation (9) we have =(ε(−ω′)) = −=(ε(ω′)),
the imaginary part of ε(ω) is negative in the left-half
plane. In compact form

=(ε) ≶ 0 for ω = ω′ ≶ 0 (11)

For ω = 0, =(ε) changes sign passing through zero:
the origin is the only point on the real axis in which
=(ε) might vanish.
As ω approaches to ∞ in any manner in the upper-
half plane, ε(ω) tends to unity: if ω → ∞ in such
a way that ω′′ → ∞, the integral in equation (1)

vanishes due to the factor e−ω
′′τ in the integrand,

while if ω′′ remains finite but |ω′| → ∞, the inte-

gral vanishes because of the oscillating factor eiω
′τ

(Riemann-Lebesgue lemma).
The properties seen of ε(ω) are sufficient to demon-
strate the following

Theorem 1.
The function ε(ω) takes no real values at any finite
point in the upper-half plane, except on the imag-
inary axis, where it decreases monotonically from
ε0 > 1 (for dielectrics) for ω = i0 to 1 for ω = i∞.
In particular, it follows that ε(ω) has no zeroes on
the upper-half plane.

Let us now choose a real value ω0 of ω and in-
tegrate the function (ε(ω) − 1)/(ω − ω0) along the
contour C given by:
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The contour C includes the whole real axis, in-
dented upwards at ω = ω0 and it is completed by
a semi-circle of infinite radius. At infinities, ε → 1
and the function (ε−1)/(ω−ω0) tends to zero more
rapidly than 1/ω. Therefore the integral∮

C

ε(ω)− 1

ω − ω0
dω (12)

converges; since ε(ω) is regular in the upper-half
plane and the point ω = ω0 has been excluded from
the region of integration, the function (ε−1)/(ω−ω0)
is analytic everywhere inside the contour C and
therefore the integral is zero for Cauchy’s theorem.
The integral over the semi-circle of infinite radius
is also zero. We pass round the point ω0 along a
semi-circle whose radius ρ → 0. The direction of
integration is clockwise, and the contribution to the
integral is −iπ[ε(ω0)− 1)]. Hence we have

lim
ρ→0

[∫ −ρ+ω0

−∞

ε− 1

ω − ω0
dω +

∫ ∞
ρ+ω0

ε− 1

ω − ω0
dω

]
−iπ[ε(ω0)−1] = 0

The limit represents the integral from −∞ to +∞,
taken as principal value. Thus

PV

∫ +∞

−∞

ε− 1

ω − ω0
dω − iπ[ε(ω0)− 1] = 0 (13)

The variable of integration ω takes now only real
values. We replace it with x, call ω the chosen
real value ω0 and write the function ε(ω) as ε(ω) =
ε′(ω) + iε′′(ω). Separating the real and imaginary
parts in equation (13) we obtain at last the follow-
ing two formulae:

ε′(ω)− 1 =
1

π
PV

∫ +∞

−∞

ε′′(x)

x− ω
dx (14)

ε′′(ω) = − 1

π
PV

∫ +∞

−∞

ε′(x)− 1

x− ω
(15)

first derived by H.A. Kramers and R. de L. Kronig in
1927. It is important to notice that the only prop-
erty of the function ε(ω) used in the derivation is

the regularity on the upper-half plane. Therefore,
we can assert that Kramers-Kronig formulae are a
direct consequence of the casualty principle.
Using the fact that ε′′(x) is an odd function, we can
rewrite equation (14) as

ε′(ω)− 1 =
1

π
PV

∫ +∞

0

ε′′(x)

x− ω
dx+

1

π
PV

∫ +∞

0

ε′′(x)

x+ ω
dx

=
2

π
PV

∫ +∞

0

xε′′(x)

x2 − ω2
dx (16)

Equation (16) has an important significance: it
makes possible to calculate the function ε′(ω) even if
the function ε′′(ω) is known approximately (i.e. em-
pirically). We notice that for every function ε′′(ω)
satisfying ε′′ > 0 for ω > 0, formula (16) gives a
function ε′ which is coherent with all the physical
requirements. On the other side, that is not true
for equation (15), because for any arbitrary choice
of ε′(ω), it might be not true that the condition
ε′′(ω) > 0 for ω > 0 is satisfied.
In dispersive theory, the expression of ε′(ω) is usu-
ally written as

ε′(ω)− 1 = −4πe2

m
PV

∫ +∞

0

f(x)

ω2 − x2
dx (17)

where e and m are the charge and the mass of the
electron and f(ω)dω is called the oscillator strength
in frequency range dω. A comparison with equation
(16) shows us that the relation that occurs between
f(ω) and ε′′(ω) is

f(ω) =
m

2π2e2
ωε′′(ω) (18)

For very large values of ω, x2 can be neglected in
the integrand of (16), thus

ε′(ω)− 1 = − 2

πω2

∫ +∞

0

xε′′(x)dx (19)

For the dielectric constant at high frequencies, rela-
tion (8) holds and the comparison shows that

m

2π2e2

∫ +∞

0

ωε′′(ω)dω =

∫ +∞

0

f(ω)dω = N (20)

If ε′′(ω) is regular in ω = 0, we can take the limit
for ω → 0 in equation (16), obtaining

ε′(0)− 1 =
2

π

∫ +∞

0

ε′′(x)

x
dx (21)

For a dielectric, equation (21) can be rewritten as

εr − 1 =
4πNe2

m
ω−2 (22)
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where the bar denotes the average over the number
of oscillators:

ω−2 ≡ 1

N

∫ +∞

0

f(ω)

ω2
dω (23)

Equation (22) might be used to estimate the value
of εr.
At last, the following formula relates the values of
ε(ω) on the upper-half of the imaginary axis to the
ones of ε′′(ω) on the real axis:

ε(iω)− 1 =
2

π

∫ +∞

0

xε′′(x)

x2 + ω2
dx (24)

Integrating over all frequencies, we obtain∫ +∞

0

[ε(iω)− 1]dω =

∫ +∞

0

ε′′(ω)dω (25)

III. APPENDIX

In this appendix, we shall prove theorem 2.1. We
report the statement:

Theorem 1.
The function ε(ω) takes no real values at any
finite point in the upper-half plane, except on the
imaginary axis, where it decreases monotonically
from εr > 1 (for dielectrics) for ω = i0 to 1 for
ω = i∞. In particular, it follows that ε(ω) has no
zeroes on the upper-half plane.

Proof. Let α(ω) = ε(ω) − 1. We prove the theorem
for dielectrics. From complex analysis it is known
that the integral

1

2πi

∮
C

dα(ω)

dω

dω

α(ω)− a
(26)

taken over a certain close curve C is equal to the dif-
ference between the number of zeroes and the num-
ber of poles of the function α(ω) − a in the region
bounded by C. We choose a ∈ R and let C be the
curve formed by the whole real axis, closed by an

infinite semicircle in the upper-half plane. Since in
the upper-half plane the function α(ω) has no pole,
so α(ω)− a has no pole and the integral (26) simply
gives the number of zeroes of the function α(ω)− a.
In order to evaluate the integral, we write it as

1

2πi

∮
C′

dα

α− a
(27)

where C ′ is the curve which maps the curve C in the
ω-plane in the plane of the complex variable α. The
infinite semicircle is mapped on to the point α = 0,
while the origin ω = 0 is mapped on to the point
α0 ≡ εr − 1. The right and left halves of the real
axis are mapped in the α-plane on to some very com-
plicated curves, which entirely lie in the upper-half
plane and in the lower-half plane, respectively. It
is important to note that these curves do not cross
the real axis (except in the points α = 0, α = α0),
since α does not take real values for any real value
of ω except ω = 0. Because of this property of C ′,
the total variation in argument of the complex num-
ber α − a passing round C ′ is 2π if a ∈ [0, α0], or
zero if a 6∈ [0, α0]. It follows that the integral (26)
is equal to 1 if 0 < a < α0, zero for any other value
of a. We therefore conclude that α(ω) takes in the
upper-half plane each real value of a in the range
[0, α0] only once and the values outside the range
not at all. Hence, on the imaginary axis, where
α(ω) is real, α(ω) can not have neither a maximum
nor a minimum, otherwise it will assume twice some
value. Consequently, α(ω) varies monotonically on
the imaginary axis, taking on that axis and nowhere
else each real value from α0 to zero only once.
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