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In the following pages, we will examine the most relevant thermodynamic quantities of a Bose-
Einstein condensate.

BOSE-EINSTEIN CONDENSATION OF AN
IDEAL GAS

A. Derivation of Bose-Einstein distribution

Bose-Einstein distribution belongs to Quantum
Statistics and applies to bosons, which are particles
with integer spin. Let us consider the i-th domain
in the phase space: it is generally subdivided in gi
cells and contains Ni bosons. Now, let us construct
the configuration of thermodynamic equilibrium ac-
cording to Boltzmann’s definition, which is that the
macroscopic state is the one that is realized by the
highest number of microscopic configurations. In
this sense, the number of ways it is possible to ordi-
nate Ni bosons in gi cells is

Wi =
(Ni + gi − 1)!

Ni!(g1 − 1)!
(1)

where the factor (Ni+gi−1)! represents all the pos-
sible permutations of the Ni bosons and of the g1−1
walls[? ], while the factors Ni! and (gi− 1)! take ac-
count of the indistinguishability of bosons and walls.
The total probability (over all of the domains) is
given by

W =
1

C

∏
i

(Ni + g1 − 1)!

Ni!(gi − 1)!
(2)

where C is a normalization constant. In order to
find the macroscopic state, we need to maximize W .
However, noticing that the function logarithm is an
injective function, we can maximize lnW :

lnW =
∑
i

ln(Ni + gi − 1)!−
∑
i

lnNi!

−
∑
i

ln(gi − 1)!− lnC (3)
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Using Stirling approximation[? ] we obtain

lnW =
∑
i

(Ni + gi − 1) ln(Ni + gi − 1)− lnC

−
∑
i

Ni lnNi −
∑
i

(gi − 1) ln(gi − 1) (4)

Typically we deal with systems in which gi � 1.
Therefore, we can assume that gi−1 ' gi and write[?
]

lnW '
∑
i

Ni ln
Ni + gi
Ni

+
∑
i

gi ln
Ni + gi
gi

(5)

Now we differentiate this last expression with respect
to Ni. After a few simple algebraic steps we finally
obtain the following expression:

d(lnW ) =
∑
i

dNi ln
Ni + gi
Ni

(6)

The maximum is though bounded by the relations∑
i

dNi = 0 (7)∑
i

uidNi = 0 (8)

since in the canonical ensemble the total number
of particles N =

∑
iNi and the total energy U =∑

i uiNi are both constant. Introducing Lagrange
multipliers α, β we obtain for the bounded maximum
the equation

d(lnW )− α
∑
i

dNi − β
∑
i

uidNi = 0

d(lnW ) + βµ
∑
i

dNi − β
∑
i

uidNi = 0

where we put α = −βµ for convenience. After fac-
toring out, we have:∑

i

dNi

[
ln
Ni + gi
Ni

+ βµ− βui
]

= 0 (9)

The N0
i which maximize the probability W then sat-

isfy

ln
N0
i + gi
N0
i

= βui − βµ



which means

N0
i =

gi
eβ(ui−µ) − 1

(10)

If we consider a single cell in the i-th domain, we
have

ni =
1

eβ(ui−µ)−1

A comparison with Thermodynamics allows us to
say that β = 1/kT , where k is Boltzmann constant
and T is the absolute temperature, and that µ is
the chemical potential of the system. At last, we
obtain the famous expression for Bose-Einstein dis-
tribution:

ni =
1

e(ui−µ)/kT − 1
(11)

We notice that the chemical potential µ must satisfy
µ ≤ 0 in order to grant the condition ni ≥ 0. In the
limit e(ui−µ)/kT � 1, we can write

ni ' eµ/kT e−ui/kT (12)

which is actually the Boltzmann distribution; there-
fore, Classical Statistics is valid if ni � 1 for every
domain. In particular, it is sufficient that n0 � 1
for the state at u0 = 0 (it will follow immediately
for the other states).
We can conclude that necessary and sufficient condi-
tion for which it is possible to apply Classical Statis-
tics is that

n0 ≡ a� 1 (13)

The parameter a is called degeneration parameter.
For non-interacting particles, u = p2/2m, we know
that the partition function Z may be written as

Z =
V (2πmkT )3/2

∆
=
V (2πmkT )3/2

h3
(14)

Here V is the accessible volume and ∆ = h3 is the
volume of a cell in the phase space (h is Planck con-
stant). So we have

a =
N

Z
=
N

V

h3

(2πmkT )3/2
(15)

Introducing the thermal de Broglie wavelenght :

λdB =
h

(2πmkT )1/2
(16)

the parameter a may be written in the form

a =
N

V
λ3dB (17)

B. BEC critical temperature

For the ground state (i = 0, u0 = 0) the average
occupation is

n0 =
1

e−µ/kT − 1
(18)

We see that for µ→ 0 n0 becomes increasingly large.
The number of occupied cells in the phase space is
given by

g(p)dp =
4πV p2dp

h3
+ δ(p)dp (19)

The ground state has only one cell, in fact g(0) = 1,
and its average occupation will be

n0 =
N0

g0
= N0 → N (20)

where N is the total number of particles. Generally,
we can write

N = N0 +Nexc (21)

where N0 is the number of particles in the ground
state at zero energy, and Nexc =

∑
i 6=0 ni(T, µ) is

the number of particles in all the excited states,
with higher energies. For a finite temperature T
and a large volume V , Nexc has a smooth behav-
ior as a function of µ and reaches its maximum
Nc = Nexc(T, µ = 0) asymptotically (as seen in
Fig. 1.1). On the other hand, N0 diverges as µ
approaches to zero. If the value of Nc is greater
than N , then eq. (1.21) is always satisfied for values
of µ considerably smaller then zero and N0 is neg-
ligible compared to N . This situation corresponds
to the point (µ1, N1) in Fig. 1. If Nc is smaller
than N , on the contrary, the occupation number N0

of the ground state is substantial and thus it is ex-
pected the condensate is formed. This situation cor-
responds to the point (µ2, N2) in Fig. 1.1.
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FIG. 1: The occupation number N0 in the ground state and
Nexc in all excited states vs. chemical potential µ. If

N > Nc, the system exhibits BEC.

The critical temperature Tc of BEC is opera-
tionally defined by the relation

Nexc(Tc, µ = 0) = N (22)

C. BEC threshold in a uniform system

1. BEC critical temperature/density

The BEC critical temperature for a uniform 3D
system is given by the condition that all the parti-
cles accommodated in excited single particles state
(except for a ground state) when µ = u0 = 0 are
equal to the total number of particles in the system:

N =

∫ +∞

0

g(u)nudu

where g(u)du is the density of states in terms of the
energy density:

g(u)du =
V

4π2

(
2m

~2

)3/2√
udu (23)

Thus

N =
V

4π2

(
2m

~2

)3/2 ∫ +∞

0

√
u

du

eu/kT − 1
(24)

We can evaluate the energy integral using the rela-
tion 1

ex−1 =
∑∞
n=1 e

−nx, where x = u/kT :∫ ∞
0

√
udu

eu/kT − 1
= (kT )3/2

∞∑
n=1

∫ ∞
0

e−nx
√
xdx

= (kT )3/2
∞∑
n=1

n−3/2
∫ ∞
0

e−t
√
tdt

= (kT )3/2ζ

(
3

2

)
Γ

(
3

2

)
(25)

where ζ( 3
2 ) =

∑∞
n=1 n

−3/2 and Γ( 3
2 ) =

∫∞
0
e−t
√
tdt.

Finally, we obtain the BEC critical density for a uni-
form 3D system:

nc ≡
Nc
V

=
1

4π2

(
2mkT

~2

)3/2

ζ

(
3

2

)
Γ

(
3

2

)
' 2.612

1

λ3Tc

(26)

Here λTc
=
√

2π~2

mkTc
is the thermal de Broglie wave-

lenght at the critical temperature. For a generic
temperature T , in which µ 6= 0, introducing the fu-
gacity z ≡ eµ/kT , 0 ≤ z ≤ 1, the number of particles
in all the excited states is given by

Nexc =
V

λ3T
g3/2(z) < N (27)

where g3/2(z) =
∑∞
n=1

zn

n3/2 is a limited, positive and
monotonically increasing function of z, which has a
maximum for z = 1 (obviously, when µ = 0 and
the population of the excited states reaches its max-
imum Nc), g3/2(1) = 2.612. Therefore, the total
population can be written as

N = Nexc +N0 =
V

λ3T
g3/2(z) +N0 (28)

By imposing the constrain that the number of parti-
cles in the ground state must be positive, we obtain
the condition:

λ3T
V
N0 =

λ3T
V
N − g3/2(z) ≥ 0

λ3T
V
N ≥ g3/2(z)

This inequality must hold for every value of g3/2(z),
so it must hold for the maximum of g3/2(z):

λ3T
V
N ≥ g3/2(1) = 2.612 (29)

This relation is called critical condition: if it is satis-
fied, then BEC can occur. For a given density N/V ,
the relation (1.29), written in terms of the tempera-
ture, defines the critical temperature Tc:

T ≤
[

N

2.612V

]2/3
2π~2

mk
≡ Tc (30)

We now notice that the number of particles in the
ground state is related to the fugacity by the equa-
tion

N0 =
1

z−1 − 1
=

z

1− z
(31)

3



Combining eq. (1.28) with (1.31), it is possible to
determinate the chemical potential µ as a function
of the temperature T :

λ3T
N

V
= g3/2(z) +

λ3T
V

z

1− z
(32)

.

2. Condensate fraction

The BEC critical condition is usually expressed in
terms of the Bose function gp(z), defined by

gp(z) =
1

Γ(p)

∫ +∞

0

dx xp−1
1

z−1ex − 1

=

∞∑
s=1

zs

sp
(33)

where z = eµ/kT is the fugacity and Γ(p) = (p− 1)!.
The energy integral for uniform 3D, 2D and 1D sys-
tems are then reduced to the Bose functions of z = 1
and p = 3/2, p = 1 and p = 1/2, respectively.
Among them, only g3/2(1) converges, while g1(1)
and g1/2(1) diverge, so that a finite critical temper-
ature Tc 6= 0 exists only for a 3D system as far as
the system is uniform and infinite.
At the critical temperature Tc in a uniform 3D sys-
tem, all particles are in the thermal populations:

V

λ3Tc

g3/2(1) = Nexc = N (34)

while at T < Tc, the thermal population is

V

λ3T
g3/2(1) = Nexc < N (35)

Taking the ration of (1.29) to (1.30) we have

λ3T
λ3Tc

=
N

Nexc
(36)

From this expression, we obtain the number of par-
ticles in the condensate:

N0 = N −Nexc = N

[
1−

(
T

Tc

)3/2
]

(37)

FIG. 2: The condensate fraction N0/N vs. the normalized
temperature T/Tc in a uniform 3D system.

D. Thermodynamic functions of an ideal gas

At a generic temperature T , less or greater than
the critical temperature Tc, the total energy U of
the system is

U =
∑
i

ui
e(ui−µ)/kT − 1

=
3

2
kT

V

λ3T
g5/2(z) (38)

where g5/2(z) corresponds to Bose function (1.28)
with p = 5/2. The energy is therefore proportional
to T 5/2. For T < Tc, z = 1 and one has g5/2(1) =
1.342. Thus, the specific heat Cv = ∂U/∂T is ob-
tained as

CV
Nk

=
15

4

V

N

1

λ3T
g5/2(1) (39)

for T < Tc, and

CV
Nk

=
15

4

V

N

g5/2(z)

λ3T
− 9

4

g3/2(z)

g1/2(z)
(40)

for T > Tc. In the limit T/Tc → +∞, that is z →
0, the specific heat decreases towards the classical
value:

CV (T )

Nk

∣∣∣∣
z→0

=
15

4
− 9

4
=

3

2

While the specific heat is a continuous function of
the temperature, it presents a typical cusp at T =
Tc, as shown in Fig. 1.3, which is called λ-point.

For example, we can consider the λ-phase trans-
formation of liquid helium in its isotopic bosonic
component 4He, which presents some characteristic
typical of BEC. If we calculate the density N/V at
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FIG. 3: Specific heat of an ideal uniform Bose gas vs.
temperature

the critical temperature using helium specific den-
sity ρ = 0.146 g/cm3, the mass of 4He, m4He =
6.4 × 10−22g for an Avogadro’s number NA of par-
ticles occupying a volume VA and using the relation
ρ = NAm4He/VA we obtain

N

V
=
NA
VA

=
NA

NAm4He/ρ
=

ρ

m4He
=

=
0.146 g cm−3

6.4× 10−22g
= 2.18× 1022 cm−3

From this value we obtain for the critical tempera-
ture

Tc =

[
N

2.612V

]2/3
h2√

2πmK
= 3.12 K

which is quite close to the value 2.17 K measured for
the temperature of the λ-transition. The difference
is due to the fact that the formulas we have applied
refer to an ideal gas of non-interacting particles,
therefore we can’t directly apply those formulas to
liquid helium.

For ideal gases in three dimensions, the ther-

modynamic law P =
2

3

U

V
holds. In BEC, the

energy U increases linearly with the volume V , so
that using (1.38) with z = 1 for T < Tc, we obtain
the equation of state for BEC:

P =
kT

λ3T
g5/2(1) (41)

The pressure of the gas does not depend on the vol-
ume in a BEC regime. This means that the com-
pressibility of the BEC phase is infinite. However,

it is possible to remedy to this problem by including
the two-body interactions. At T > Tc, the pressure
is given by

P =
kT

λ3T
g5/2(z) (42)

Since z = eµ/kT decreases toward zero with increas-
ing the volume V , the pressure P also decreases with
V . Fig. 1.4 shows the equation state of the ideal
Bose gas.

FIG. 4: Pressure of the ideal Bose gas vs. the specific
volume v = V/N for two temperatures T1 > T2.

The phase transition line separating the BEC
and the normal phase is obtained by substituting
λ3Tc

N/V = g3/2(1) into (1.41):

Pv5/3 = (2π~2m)
g5/2(1)

[g3/2(1)]5/3
(43)

For T < Tc in the limit V/λ3T → ∞ with z = 1 and
µ = 0, the energy U can be written as

U(T ) = AT 5/2, CV =
5

2
AT 3/2 (44)

where A = 3
2
V
h3 (2πmkB)3/2kBg5/2(1), therefore, in

this range of temperature we have for entropy

dS =
δQ

T
=
CV dT

T
=

5

2
AT 1/2dT

S =

∫ T

0

dS =
5

3
AT 3/2 =

5

3

U

T
(45)

and for Helmholtz free energy

F = U − TS = AT 5/2 − 5

3
AT 5/2 = −2

3
U (46)
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