TRANSIZIONI DI FASE QUANTISTICHE

Ettore Vicari

Le transizioni di fase quantistiche mostrano cambiamenti qualitativi nelle proprietd
dello stato fondamentale in sistemi a molti corpi. A differenza delle transizioni di fase
classiche, che sono generalmente causate da fluttuazioni termiche (per esempio la
transizione liquido-gas), le transizioni quantistiche hanno origine dalle fluttuazioni

quantistiche a temperatura zero.
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lavori in collaborazione con Giacomo Ceccarelli, Massimo Campostrini,
Francesco Delfino, Jacopo Nespolo, Andrea Pelissetto, Subir Sachdev, ...



Phase transitions and Critical phenomena are observed in many
physical systems
There are two broad classes of phase transitions:

first order — discontinuity in thermodynamic quantities, such as the
energy density

continuous — nonanalytic behavior due to a diverging length scale
characterizing the physical correlations

Examples of continuous transitions: e ferromagnetic transitions e liquid-vapor

transitions in fluids, already observed in the XIX century
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o first general framework was proposed by Landau (1937) — mean-field approx
e satisfactory understanding by the renormalization-group theory (Wilson 1971)



Simple interactions may give rise to complex phenomena, with long-distance
correlations, after an appropriate tuning of the thermodynamic parameters.

Critical phenomena observed in many different materials have several features
in common — Universality.

e Ferromagnetism, Curie transition:

e magnetization from the spin of electrons in the imcomplete atomic shells of metal

atoms: each electron carries one Bohr magneton
e interactions among spins due to exchange effects
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Ising model with s; = +1 describes uniaxial magnets

e Liquid-vapor transition with density instead of magnetization and chemical potential
instead of magnetic field: Hiagtice gas = —J Z@j) pipj — 1 >; Pi, With p; =0, 1.

Ex.: critical opalescence in liquid systems, at their liquid-gas continuous transition,
light diffusion when the correlation length increases from 10~2 m to 106 m




Bose-Einstein condensation in Bose gases
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of atoms condenses to the lowest state, in a free gas

Below T. ~ H2(N/V)?/3/m, a macroscopic number\ié:l ==
No/N =1 — (T/T.)3/2.
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Interactions, even weak, give rise to a power-law critical behavior characterized by the
U(1) symmetry of the condensate wave function.

BEC recently observed in weakly interacting
boson gases, made of alkali atoms, rubid-
ium, sodium, lithium

velocity distribution of rubidium atoms

Earlier BEC-like phenomena in *He, which is a liquid rather than a gas, thus strongly
interacting (only 9% atoms condense for T' — 0, providing the superfluid component)
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Continuous transitions are characterized by power-law behaviors

e Disordered (symmetric) phase (t=7/T.—1 >0, h =0):
E~t™, Ot x~t™h, x~ g2

e Ordered (broken) phase (t < 0, h = 0%): Cy ~ |t|=%, M ~ |t|?

e Critical isotherm (t =0, h > 0): x ~ \h|77/ﬁ‘5v é(q) ~ g2t

e Scaling equation of state: h = t%F(z), z = Mt in magnets
(in fluids h — p — p. and M — p — p)

e Finite-size scaling, ex. Y ~ L> " att =0

e There are also critical behaviors characterized by exponential approaches: LATTICE
QCD where & ~ exp(c¢f) , and also 2D o models, 2D KT transition



Many results for the 3D Ising universality class characterized by a Z,
parity symmetry (which may arise dynamically)

— quantum field theory £ = (9,¢)? + r¢? + up* with p € R

These global conditions apply liquid-vapor systems, fluid mixtures,
uniaxial magnets, etc...

3D Ising exponents v a n Ié]

Experiments liquid-vapour 0.6297(4) 0.111(1) 0.042(6) 0.324(2)
fluid mixtures 0.6297(7) 0.111(2) 0.038(3) 0.327(3)
uniaxial magnets  0.6300(17) 0.110(5) 0.325(2)

Theory PFT 6,71 MZM 0.6304(13)  0.109(4)  0.034(3)  0.326(1)
O(€5) exp 0.6290(25)  0.113(7)  0.036(5)  0.326(3)

Theory Lattice HT exp 0.63012(16) 0.1096(5) 0.0364(2) 0.3265(1)
MC 0.63020(12)  0.1094(4) 0.0368(2) 0.3267(1)
MC 0.63002(10)

Table: Estimates of the critical exponents of the 3D Ising universality class, from
experiments, resummation of the FT 6,7-loop calculations within the MZM scheme
and of O(€%) expansions, and from lattice techniques: 25th order high-temperature
(HT) expansion and Monte Carlo (MC) simulations.



Main ideas to describe the critical behavior at a continuous transition
e Order parameter which effectively describes the critical modes

e Scaling hypothesis: singularities arise from the long-range correlations
of the order parameter, diverging length scale

e Universality: the critical behavior is essentially determined by a few
global properties: the space dimensionality, the nature and the
symmetry of the order parameter, the symmetry breaking
RENORMALIZATION-GROUP THEORY

e RG flow in a Hamiltonian space

e the critical behavior is associated with a fixed point of the RG flow

e only a few perturbations are relevant, the corresponding positive
eigenvalues are related to the critical exponents v, 7, etc...



The Gibbs free energy obeys a scaling law
Feing (U1, U2,y .., U, . ..) = b_dfsing(bylul, b2 us, ... b ug, .. .)
where u; are the nonlinear scaling fields (analytic functions)
In a standard continuous transition there are two relevant fields u; with
y; > 0, and an infinite set of irrelevant fields v; with y; < 0.
u~t, u,~H, for t,H—0

Setting 0¥t |u;| = 1 — Faing = || Y Faing (wn|ue| 92/t v;ug| 7Vi/v)
Since ;|ug|7¥i/¥1 — 0 for t — 0,

Faims 5 [/ F(LEL|E] 7902 17925 o (L] +

ye = 1/v, yn = (B+7)/v, Ai = —yi/y: > 0.

In the presence of other relevant perturbations beside t and H — multicritical
behaviors



Phase transitions and critical phenomena in cold-atom experiments

Finite-T' transition related to the Bose-
Einstein condensation in interacting
gases, experiments show an increasing cor-
relation length compatible with a continuous
transition
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Power-law critical behavior characterized by the U(1) symmetry of
the condensate wave function, — XY universality class, thus
prediciting & ~ |T' — T|™" with v = 0.6717(1)

The trapping potential confining the atoms signif-

icantly affects the critical behavior: correlations are not citia st
expected to develop a diverging length scale.

Trap-size scaling theory to describe how critical /7
correlations develop in large traps.



From statistical models to quantum field theories

Ex.: Ising model defined on a d-dimensional lattice,

H=-J} o005, oi=%x1, Z=3% . exp(—H/T)

e The critical behavior is due to the long-range modes, with [ > a.

e As a result of a blocking procedure (b < ), preserving the symmetry,

Hoa =3, (Potp —¢2)? +uds, (93 —v°)% with p € R

° The limita — 0 of H 1 should not change the universality class
= [d%x [(9, —H“cp +upt]  r—rex T Te

o Z= f dy] exp[—H(sO)] — QFT with H(p) — L(y)

e RG flow by a set of RG equations for the correlation functions

The way back provides a nonperturbative formulation of an Euclidean
QFT, from the critical behavior of a statistical model.

Ex.: Nonperturbative formulation of the strong-
interaction theory, from the critical regime of a @ @

4D statistical system
explaining the way from quarks to baryons @



Quantum transitions in many-body systems
Phase transitions driven by quantum fluctuations, thus when T" — 0, —
singular properties of the ground state and quantum critical behavior

Consider a quantum many-body theory described by the
Hamiltonian H = Hy + gH; E >—<

e Level crossing if [Ho, H1] = 0. @

o More interestingly: avoided level crossing between
the ground state and the first excited state, which closes g M
approaching the infinite volume limit —

leading to a nonanalicity at g = g.

Nonanaliticity of the low-energy states, the gap A — 0 in the large-volume limit , the
low-energy scale tend to zero

Quantum critical behavior with a peculiar interplay between quantum and
thermal fluctuations at low 7.

Continuous QPT — diverging length scale &, and scaling properties,
described by the RG scaling theory



Example: the Ising chain in a transverse field

Hig=—-J E oiof, —go;, o; = Pauli matrices
i

g =0 — two degenerate ground states [[, | —;) and [[, | <)
g — 00 — GS=]], | 1), breaking Z,

These phases extend to finite g, quantum transition at g./J =1,
between quantum paramagnetic and ordered phases

Continuous QPT — diverging length scale &, and scaling properties.

2D Ising quantum critical behavior with A ~ ¢=1 ~ |g — g,|



Universality properties and renormalization-group theory extend to

quantum transitions

A QPT is generally characterized by a relevant parameter g, with RG

dimensions y, = 1/v

E~lgl™",  A~g*~E7

g=9—9c

The temperature represents a relevant parameter, characterized by its
power law, i.e. & ~ T/ at the critical point.

Scaling law of the free energy F(u,T) = b~ (4+2) F(gb'/", Th?)

T
Typical phase diagrams —

e classical description at the finite-T'
transition line, when Awcriy < kT

e Quantum scaling laws describe the
critical behavior around the QCP, aris-
ing from the interplay between thermal
and quantum fluctuations
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Like classical transitions, global features, such as the summetry and
symmetry breaking pattern, determine the critical behavior

Ex.: The quantum critical behavior of the d-dim quantum lIsing/Heisenberg models
shares the same universal features of the (d + 1)-dim classical Ising/Heisenberg

models, such as the critical exponents, etc...

Reflecting the quantum-to-classical mapping from d-dim quantum
many-body systems to (d + 1)-dim classical statistical systems
Several applications:

e Quantum magnetism and criticality
e Magnetic excitations of the insulator LiHoF4, quantum Ising transition

e Quantum Heisenberg antiferromagnets, the insulator LagCuQOy4
e High-T superconductors

e Quantum particle systems

e BCS to BEC transition in Fermi atomic systems

e new matter states, such as spin liquids, disorder down to very low T'



Quantum phase transitions in cold-atom experiments
(a)

() Superfiuid state (b) Mott-insulator state

Atoms freely move around in an Atoms localize at lattice sites because of
optical latice. inter-atomic interactions
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Ex.: Quantum Mott insulator to superfluid transitions and different
Mott phases (where the density is independent of 1)

A common feature is a confining potential, which can be varied to achieve different
spatial geometries, allowing also to effectively reduce the spatial dims



